Optimization of sequential verification by history-based dynamic minimization of BDDs

نویسندگان

  • Rolf Drechsler
  • Wolfgang Günther
چکیده

Binary Decision Diagrams (BDDs) are the state-of-the-art data structure in VLSI CAD, especially in sequential verification tasks, like state-space exploration and image computation. Since their size largely depends on the chosen variable ordering, dynamic variable reordering methods, like sifting, often have to be applied while the BDD is constructed. Usually sifting is called each time a given node limit is reached and it is therefore called frequently during the construction of large BDDs. Often most of the runtime is spent for sifting while the BDD is built. Recently an approach to reduce runtime during BDD construction for combinational circuits by using history-based decision procedures has been proposed. In this paper we show that for sequential circuits different criteria should be used to select the type of sifting that involve knowledge from the sequential domain. The algorithm has been included in VIS. Experimental results show that the overall runtime can be reduced significantly and is also clearly superior to the combinational approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exact Minimization of Path-Related Objective Functions for BDDs

Reduced ordered Binary Decision Diagrams (BDDs) are a data structure for efficient representation and manipulation of Boolean functions. They are frequently used in logic synthesis and formal verification. In recent practical applications, BDDs are optimized with respect to new objective functions. In this paper we investigate the exact optimization of BDDs with respect to path-related objectiv...

متن کامل

Optimal Capacitor Allocation in Radial Distribution Networks for Annual Costs Minimization Using Hybrid PSO and Sequential Power Loss Index Based Method

In the most recent heuristic methods, the high potential buses for capacitor placement are initially identified and ranked using loss sensitivity factors (LSFs) or power loss index (PLI). These factors or indices help to reduce the search space of the optimization procedure, but they may not always indicate the appropriate placement of capacitors. This paper proposes an efficient approach for t...

متن کامل

Improving Static Ordering of BDDs for Reachability Analysis

Binary decision diagrams (BDDs) are used for automatic synthesis and formal verification of combinational and sequential circuits. However, a larger adoption of these technologies for sequential designs still depends on a more efficient use of BDDs. One important factor is the order of the variables in the BDD, which has a direct impact on the space (and time) requirements of the reachability a...

متن کامل

SEQUENTIAL PENALTY HANDLING TECHNIQUES FOR SIZING DESIGN OF PIN-JOINTED STRUCTURES BY OBSERVER-TEACHER-LEARNER-BASED OPTIMIZATION

Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number ...

متن کامل

Dynamic Re-Encoding During MDD Minimization

Multi-valued decision diagrams (MDDs) are a generalization of binary decision diagrams (BDDs). They often allow efficient representation of functions with multi-valued input variables similar to BDDs in the binary case. Therefore they are suitable for several applications in synthesis and verification of integrated circuits. MDD sizes counted in number of nodes vary from linear to exponential d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000